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Abstract— Unmanned aerial vehicle (UAV) navigation is 

gaining more and more interest in both research and business. 

Real UAV experiments could be expensive and time-consuming. 

As an alternative, the validation and testing of UAV 

navigational algorithms using simulation is essential in the early 

phases of development when it is difficult to get high-precision 

and high-fidelity experiment data. In this proposal, we provide 

a framework for a visual navigational validation environment 

for unmanned aerial vehicles based on ROS2, PX4, and Gazebo. 

When implemented, the suggested simulator can provide non-

expert end-users with a modular simulation environment that is 

faster and more reliable for verifying and advancing proposed 

UAV navigation solutions, such as visual SLAM (Simultaneous 

Localization and Mapping) algorithms. 
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I. INTRODUCTION 

Unmanned Aerial Vehicles (UAV) have many civil 
applications like search and rescue, delivery of goods, security 
and surveillance, and civil infrastructure inspection [1]. 
Navigation, including perception, localization, motion 
planning, and motion control, is the meta-capability for UAVs 
in successfully performing tasks. The Global Navigation 
Satellite System (GNSS) is the most common way of 
navigation. However, the signal of GNSS would be 
unavailable for indoor environments and vulnerable under 
forest canopies [2] and in urban or natural canyons.[3] 
Therefore, the application of UAVs in environments devoid 
of GNSS service has motivated research into GNSS-
independent navigation solutions[4,5]. Nevertheless, although 
testing and verifying these solutions in realistic scenarios can 
be more faithful to the real world, it could also be expensive 
and even dangerous due to the complex hardware setup, safety 
precautions, and battery constraints [6]. Simulators, on the 
other hand, allow for the safe and economic development and 
testing of algorithms without the time-consuming and costly 
process of dealing with real-world hardware. An excellent 
simulation environment frequently possesses the following 
characteristics:  

1. Conforms to physical principles, i.e., it can faithfully 
represent the dynamics in the real world;  

2. Is fast in simulating, i.e., a large number of simulation 
data that can be used to verify the algorithm can be obtained 
quickly within limited resources and time;  

3. Mirrors the real-life environment, i.e., maintains as 
much consistency with the actual scene as possible. 

In practice, however, meeting all of the aforementioned 
attributes at the same time might be challenging, if not 
impossible. This is due to the fact that increasing scene 
features and physical characteristics increase the amount of 
calculation, lowering simulation speed, and implying that 
these aspects are clashing to some extent. [7] 

Despite these constraints, current robotic communities 
have provided a plethora of very practical and useful 
simulation settings. Among these simulation environments, 
many for universal purposes emphasize attribute 1, which 
means focusing mostly on UAV dynamics with insufficient 
attention to environmental perception. Environment-
integrated simulators, such as the Gazebo-based RotorS [8, 9], 
which is intended for tackling higher-level problems such as 
path planning and SLAM, focus more on environment 
perception so that visual navigational algorithms such as 
SLAM can be better validated. Furthermore, for better 
integration and deployment of perception or planning 
components, most academic developers have focused heavily 
on ROS[10]. However, because ROS is designed to use a 
master-centered node communication architecture, it is less 
robust and may result in the failure of the entire system if the 
master node crashes; additionally, ROS lacks adaptation for 
different operating systems, and ROS is not suitable for multi-
UAV emulation due to memory management and network 
security limitations[11]. Furthermore, because the 
development and maintenance of the most recent ROS Noetic 
will end in 2025[12] and will be replaced by ROS2, it is 
worthwhile to design and implement a simulation platform 
based on ROS2, which can meet the requirement for long-term 
simulation iteration while making the simulation platform 
more stable and improving the performance and robustness of 
the entire system operation process[13].We will present a 
simulation environment based on ROS2, PX4[14], and 
Gazebo in this concept. Once created, end-users can easily 
convert the customized solution for visual navigation to real-
world hardware. Software engineering ideas will also be 
implemented to improve quality and procedure management. 
We will present a simulation environment based on ROS2, 
PX4[14], and Gazebo in this concept. Once accomplished, 
end-users can easily convert the customized solution for visual 
navigation to real-world hardware. Software engineering 
ideas will also be implemented to improve quality and 
procedure management. 

The remainder of this proposal is organized as follows: 
Section II presents a review of the literature to compare related 
works, and Section III introduces the proposed simulation 
framework with the design pattern and software procedure. 



 

Section IV shows the estimated difficulties and possible 
solutions. Section V describes the metrics and measure for 
evaluating the performance of this simulator and give out 
expected results. Section VI drafts out the planned timeline for 
this scheme using the Gannt graph. 

II. RESEARCH AIM 

     The purpose of this research is to, first, identify the 

simulation requirements for navigation solutions and specify 

the boundary as well as the scope of this system, second, 

propose an architecture for the simulation environment, and 

finally test the simulator and evaluate the accuracy and 

capacity for the deployment of visual navigation solutions. 

III. LITERATURE REVIEW 

The UAV simulation environment can roughly be divided 

into two categories: 1) universal robot simulation software 

and 2) UAV simulation environment based on the universal 

simulation platform for specialized objectives such as 

obstacle avoidance or network communication.  

 

For universal simulators, Microsoft's Shah et al. developed 

AirSim[15] as a plugin for the Unreal Engine, which supports 

both hardware-in-the-loop (HITL) and software-in-the-loop 

(SITL) using flying controllers such as PX4, and Microsoft 

will later announce Project AirSim[16]. However, because it 

is a flight simulator rather than a robot simulator, it focuses 

on dynamics instead of perception. Likewise, since AirSim is 

tightly coupled to the UE rendering engine, it lacks scalability 

for simulation speeds and is difficult to integrate and 

migrate[17]. The jMavSim was first developed by Babushkin 

et al.[18] for testing PX4 firmware and devices can be easily 

applied with the PX4 firmware, but further expansion and 

application of this may be limited[19]. MIT's Guerra et al. 

[20] proposed the FlightGoggles, which are based on the 

powerful Unity implementation rendering engine, allowing 

researchers to accelerate software and algorithm 

development by avoiding evaluating complex and difficult-

to-model interactions (such as aerodynamics, motor 

mechanics, and so on). Yunlong et al. developed the 

Flightmare[7] based on FlightGoggles, employing the Unity 

rendering engine and dynamic modeling separation method 

to achieve faster and more accurate dynamic simulation, but 

computational resource consumption remains an issue. 

 

For a customized simulation environment, Ma et al. 

created a simulation environment[21] based on the AirSim, 

ROS, and PX4 SITL that combines simulation authenticity 

and portability. However, the simulator is incapable of 

carrying out high-level flight schedules. Based on Gazebo, 

ROS, and PX4, Xiao Kun et al. created the XTDrone 

simulation platform[22], which can effectively integrate 

different modules to achieve the relevant simulation 

requirements and adjust the simulation speed based on 

computer performance. Although XTDrone can perform 

some SLAM-related tasks, it is more focused on providing a 

general solution for UAVs than an off-the-shelf solution for 

visual navigation. Chen et al.[6] proposed an end-to-end 

simulator that combines localization, mapping, and planning 

kits with ROS-Gazebo-PX4 toolchain customization. 

However, the simulator only supports software in the loop 

(SITL) simulations, which means that well-tested algorithms 

has to be migrated to the drones with additional validations 

from the bottom up. Meanwhile, when the master node fails 

to function, ROS is less stable than ROS2, which has a 

decentralized architecture for its middleware. These 

platforms can meet the needs of their respective fields, and 

they all have the requisite characteristics for an ideal 

simulation environment, but they all have some of the 

following drawbacks: The configuration of the UAV indoor 

navigation algorithm verification is complicated; simulation 

accuracy is limited; migration is difficult; user customization 

and secondary development are difficult. 

IV. PROPOSED METHODOLOGY 

 In this section, we design a simulator architecture based on 
ROS2, Gazebo, and PX4. Once implemented, the software 
will be able to better support user-customized visual 
navigation algorithm verification for UAVs and provide the 
corresponding user interface to evaluate the execution results 
of the corresponding algorithm, improving the efficiency and 
security of the algorithm verification, lowering the cost of the 
algorithm during the verification process, and shortening the 
development cycle of the UAV's algorithm. As a result, this 
simulation environment employs SITL first to eliminate 
software flaws in the early stages, followed by HITL to better 
mimic real-world execution. 

 

Figure 1. Draft architecture for the Simulator 

 As illustrated in Figure 1, we design an architecture for the 
simulation environment. The end-user parts are considered to 
show the interaction with the simulator in order to better 
illustrate the workflow of the proposed architecture. The 
simulator will support both SITL and HITL modes for smooth 
transitions from simulation to real-world UAV tasks. 
Depending on the algorithms used, the Gazebo provides world 
and UAV models, as well as custom-define sensor models. 
Users can then operate the UAVs with keyboard controllers to 
perceive the environment and compare the algorithm's 
estimation with the simulator's ground truth. The navigation 
modules are divided into separate modules that include 
localization, planning, and mapping components that the end 
user can customize for specific usage. Furthermore, because 



 

the simulator runs on ROS2, these modules communicate and 
coordinate with one another via ROS2 topics[24]. The 
communication between ROS2 and PX4[25] will also include 
PX4-supplied methods. In the early stages of SITL, the 
perception and planning modules, along with other 
components, run on the host. The user can begin by using 
QgroundControl to schedule flights and monitor drone status. 
The simulator will then instruct the sensors plugin in Gazebo 
to retrieve data from the environment and send it for 
navigation tasks such as perception and mapping. The 
situation in HITL would become more complicated with the 
introduction of environmental factors such as drone 
communications, weather, and human interruptions. In HITL 
mode, the navigation modules run on the UAV's onboard 
computer, and the Gazebo serves as an intermediary between 
the PX4 controller and the navigational modules. 

 The ability to abstract the system is required before using 
detailed software design patterns. High-level abstraction 
necessitates a thorough understanding of the entire system, 
including component interactions and the function of each 
component. As a result, the detailed architecture will be 
proposed and then refined later for a more seamless 
implementation. 

V. DIFFICULTIES AND POSSIBLE SOLUTIONS 

 This section provides an overview of the potential 
problems and solutions. The first issue is that ROS and ROS2 
are incompatible. To address this issue, we propose two 
possible solutions for running the two environments 
concurrently on a single host: 1) Use the ROS1bridge 
provided by the ROS developers; and 2) Use Docker 
containers to encapsulate the environments. The 
sophistication of the simulation environment itself would be 
the second barrier. To improve robustness and reusability, we 
intend to use the Model-Driven Engineering paradigm to 
decompose the workload for each module. 

A. ROS and ROS2 Environment Incompatibility 

  The incompatibility of ROS and ROS2 is a barrier to 
implementing the simulator because the parallel nodes from 
ROS and ROS2 must run concurrently within a single 
simulator to make a trade-off between the abundance of ROS 
packages and the benefits of ROS2 such as higher robustness 
from distributed architecture. For example, the ROS package 
rqt_bag does not yet have a counterpart in ROS2[26]. To 
address these issues, two possible solutions are proposed: 1) 
Use the ROS1brigde to bridge the gap between ROS and 
ROS2; 2) Using Docker, create separate containers to hold 
two middleware. 

1. ROS1brigde migration  

 The ROS community proposed ROS1bridge for the 
migration to ROS2 in 2015. The onboard computer's 
microRTPS agent acts as a bridge between PX4 and ROS2 
messages and topics[27], allowing information (e.g., vehicle 
odometry) to be read from and commands (e.g., waypoints) to 
be written to the flight controller[28]. Supported by PX4, it 
allows ROS 2 nodes to interact with the PX4[29]. Despite its 
rapid iteration, the microRTPS is currently in use and could 
be adopted for further integration. 

2. Docker encapsulation  

Shunki et al.[30] devised a container-based method for 
migrating ROS-based mobile robots to ROS2 using separate 
Docker containers. Docker migration is more efficient than 
methods such as dual booting because it is a lightweight 
framework. The computer does not directly install ROS and/or 
ROS2, but rather implements the two ROS and/or ROS2 
versions, as well as the corresponding Ubuntu version of the 
OS, as each container within Docker. Both environments are 
thus encapsulated in their respective containers, with 
communication capability reserved. The Docker method can 
be used further in this study to improve compatibility of 
different environments. 

B. The complexity of the software development process 

 In large-scale software systems, the complexity of the 
software development process is unavoidable. A 2020 
survey[31] revealed that 92 percent of robotic software 
developers were concerned about the robustness of current 
robotic software systems. As a result, the extensive use of 
object-oriented methods benefits software development 
engineering management and optimization. This method 
could aid in the development of a modular environment for 
large-scale software system implementation. Model-driven 
engineering is proposed as a promising solution to this 
problem. Model-driven engineering can be used in robotic 
software development procedures to improve robustness and 
reuse[32]. Instead of being driven by code, the model-driven 
process enriches the model during development until it is 
finally executable in the form of deployed software 
components[33]. The simulator will first be described in a 
model-based representation (platform independent model or 
PIM) that is independent of the underlying framework, 
middleware structures, operating systems, and programming 
languages in the proposed procedure [34]. Following 
validation of PIM's correctness, it will be transformed into a 
platform-specific model (PSM) that provides bindings for 
platform-specific refinements. The PSM will then be 
converted into a platform-specific implementation (PSI) [36]. 

VI.  EVALUATION AND EXPECTED RESULT 

This section focuses on the simulator's evaluation metrics 
and expected test results. The test can be performed in two 
steps: the first will be a unit test, and the second will include 
an exhaustive test on well-known datasets. We will first define 
modular test units for the unit test in order to evaluate the 
functionality within each module and cover the stability of 
each one in the early stages. The comprehensive test is 
typically used to identify module faults. 

Following the integration of each module, we will test the 
simulator's accuracy on the TUM[37], KITTY[38], and 
EuroC[39] datasets with SLAM-related algorithms such as 
ORB-SLAM2[40][41] and VINS-fusion[42] for monocular, 
stereo, and Lidar input to comprehensively compare the 
simulator's performance. Visual information is typically fused 
with IMU data in the UAV application using either a filter-
based framework or an optimization-based framework. As a 
result, testing it with both visual and inertial data inputs would 
be more reliable. To quantify the results, we will use the 



 

trajectory comparison between our estimation and the ground 
truth[43, 44]. 

VII. OUTLINE OF THE WORKING PLAN 

This section is about the simulator's strategic planning. A 
Gantt chart is used to illustrate the plan. The Gantt chart is a 
diagram that shows the relationship between various 
tasks[45]. We have the following tasks and subtasks for this 
scheme. During the requirement procedure, we will fully 
consider end-user requirements and create a prototype to 
specify and precisely define the system's interaction and 
expected behavior. The architecture of this simulator will then 
be further designed and refined, and a primary model for it 
will be presented. [46]. Figure 2 depicts the six stages of this 
research's work plan: 1)Requirement gathering, which 
includes a background check and competitor research. 2) The 

architecture analysis, which includes module decomposition 
and architecture refinement based on the specified 
requirements; 3) The system design, in which the UML will 
be used to build a coarse-to-fine structure of pyramidical 
models based on the architecture[47]. 4) Code 
implementation, which involves converting the defined 
models into executable codes. 5) Testing and debugging, 
when integration tests based on unit tests will be implemented 
to verify the consistency of each component before the 
comprehensive system test on datasets for validation; 6) The 
deployment process, in which the modules will be jigsawed 
and assembled into a simulator for use and further 
development; 7)The documentation process, in which all 
documents for requirements, design, deployment, and end-
user instruction will be archived. This stage will also compile 
the previous stages into a paper and an open-source library.

 

 

 
Figure 2.The working plan for this research 
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