

A Framework for UAV Simulation Environment for

Visual Navigation Deployment
Yijun Huang1

1. College of Software Engineering, Beihang University

Beijing, China

yjhuang@buaa.edu.cn

Abstract— Unmanned aerial vehicle (UAV) navigation is

gaining more and more interest in both research and business.

Real UAV experiments could be expensive and time-consuming.

As an alternative, the validation and testing of UAV

navigational algorithms using simulation is essential in the early

phases of development when it is difficult to get high-precision

and high-fidelity experiment data. In this proposal, we provide

a framework for a visual navigational validation environment

for unmanned aerial vehicles based on ROS2, PX4, and Gazebo.

When implemented, the suggested simulator can provide non-

expert end-users with a modular simulation environment that is

faster and more reliable for verifying and advancing proposed

UAV navigation solutions, such as visual SLAM (Simultaneous

Localization and Mapping) algorithms.

Keywords— Simulator, ROS2, PX4, Gazebo

I. INTRODUCTION

Unmanned Aerial Vehicles (UAV) have many civil
applications like search and rescue, delivery of goods, security
and surveillance, and civil infrastructure inspection [1].
Navigation, including perception, localization, motion
planning, and motion control, is the meta-capability for UAVs
in successfully performing tasks. The Global Navigation
Satellite System (GNSS) is the most common way of
navigation. However, the signal of GNSS would be
unavailable for indoor environments and vulnerable under
forest canopies [2] and in urban or natural canyons.[3]
Therefore, the application of UAVs in environments devoid
of GNSS service has motivated research into GNSS-
independent navigation solutions[4,5]. Nevertheless, although
testing and verifying these solutions in realistic scenarios can
be more faithful to the real world, it could also be expensive
and even dangerous due to the complex hardware setup, safety
precautions, and battery constraints [6]. Simulators, on the
other hand, allow for the safe and economic development and
testing of algorithms without the time-consuming and costly
process of dealing with real-world hardware. An excellent
simulation environment frequently possesses the following
characteristics:

1. Conforms to physical principles, i.e., it can faithfully
represent the dynamics in the real world;

2. Is fast in simulating, i.e., a large number of simulation
data that can be used to verify the algorithm can be obtained
quickly within limited resources and time;

3. Mirrors the real-life environment, i.e., maintains as
much consistency with the actual scene as possible.

In practice, however, meeting all of the aforementioned
attributes at the same time might be challenging, if not
impossible. This is due to the fact that increasing scene
features and physical characteristics increase the amount of
calculation, lowering simulation speed, and implying that
these aspects are clashing to some extent. [7]

Despite these constraints, current robotic communities
have provided a plethora of very practical and useful
simulation settings. Among these simulation environments,
many for universal purposes emphasize attribute 1, which
means focusing mostly on UAV dynamics with insufficient
attention to environmental perception. Environment-
integrated simulators, such as the Gazebo-based RotorS [8, 9],
which is intended for tackling higher-level problems such as
path planning and SLAM, focus more on environment
perception so that visual navigational algorithms such as
SLAM can be better validated. Furthermore, for better
integration and deployment of perception or planning
components, most academic developers have focused heavily
on ROS[10]. However, because ROS is designed to use a
master-centered node communication architecture, it is less
robust and may result in the failure of the entire system if the
master node crashes; additionally, ROS lacks adaptation for
different operating systems, and ROS is not suitable for multi-
UAV emulation due to memory management and network
security limitations[11]. Furthermore, because the
development and maintenance of the most recent ROS Noetic
will end in 2025[12] and will be replaced by ROS2, it is
worthwhile to design and implement a simulation platform
based on ROS2, which can meet the requirement for long-term
simulation iteration while making the simulation platform
more stable and improving the performance and robustness of
the entire system operation process[13].We will present a
simulation environment based on ROS2, PX4[14], and
Gazebo in this concept. Once created, end-users can easily
convert the customized solution for visual navigation to real-
world hardware. Software engineering ideas will also be
implemented to improve quality and procedure management.
We will present a simulation environment based on ROS2,
PX4[14], and Gazebo in this concept. Once accomplished,
end-users can easily convert the customized solution for visual
navigation to real-world hardware. Software engineering
ideas will also be implemented to improve quality and
procedure management.

The remainder of this proposal is organized as follows:
Section II presents a review of the literature to compare related
works, and Section III introduces the proposed simulation
framework with the design pattern and software procedure.

Section IV shows the estimated difficulties and possible
solutions. Section V describes the metrics and measure for
evaluating the performance of this simulator and give out
expected results. Section VI drafts out the planned timeline for
this scheme using the Gannt graph.

II. RESEARCH AIM

 The purpose of this research is to, first, identify the

simulation requirements for navigation solutions and specify

the boundary as well as the scope of this system, second,

propose an architecture for the simulation environment, and

finally test the simulator and evaluate the accuracy and

capacity for the deployment of visual navigation solutions.

III. LITERATURE REVIEW

The UAV simulation environment can roughly be divided

into two categories: 1) universal robot simulation software

and 2) UAV simulation environment based on the universal

simulation platform for specialized objectives such as

obstacle avoidance or network communication.

For universal simulators, Microsoft's Shah et al. developed

AirSim[15] as a plugin for the Unreal Engine, which supports

both hardware-in-the-loop (HITL) and software-in-the-loop

(SITL) using flying controllers such as PX4, and Microsoft

will later announce Project AirSim[16]. However, because it

is a flight simulator rather than a robot simulator, it focuses

on dynamics instead of perception. Likewise, since AirSim is

tightly coupled to the UE rendering engine, it lacks scalability

for simulation speeds and is difficult to integrate and

migrate[17]. The jMavSim was first developed by Babushkin

et al.[18] for testing PX4 firmware and devices can be easily

applied with the PX4 firmware, but further expansion and

application of this may be limited[19]. MIT's Guerra et al.

[20] proposed the FlightGoggles, which are based on the

powerful Unity implementation rendering engine, allowing

researchers to accelerate software and algorithm

development by avoiding evaluating complex and difficult-

to-model interactions (such as aerodynamics, motor

mechanics, and so on). Yunlong et al. developed the

Flightmare[7] based on FlightGoggles, employing the Unity

rendering engine and dynamic modeling separation method

to achieve faster and more accurate dynamic simulation, but

computational resource consumption remains an issue.

For a customized simulation environment, Ma et al.

created a simulation environment[21] based on the AirSim,

ROS, and PX4 SITL that combines simulation authenticity

and portability. However, the simulator is incapable of

carrying out high-level flight schedules. Based on Gazebo,

ROS, and PX4, Xiao Kun et al. created the XTDrone

simulation platform[22], which can effectively integrate

different modules to achieve the relevant simulation

requirements and adjust the simulation speed based on

computer performance. Although XTDrone can perform

some SLAM-related tasks, it is more focused on providing a

general solution for UAVs than an off-the-shelf solution for

visual navigation. Chen et al.[6] proposed an end-to-end

simulator that combines localization, mapping, and planning

kits with ROS-Gazebo-PX4 toolchain customization.

However, the simulator only supports software in the loop

(SITL) simulations, which means that well-tested algorithms

has to be migrated to the drones with additional validations

from the bottom up. Meanwhile, when the master node fails

to function, ROS is less stable than ROS2, which has a

decentralized architecture for its middleware. These

platforms can meet the needs of their respective fields, and

they all have the requisite characteristics for an ideal

simulation environment, but they all have some of the

following drawbacks: The configuration of the UAV indoor

navigation algorithm verification is complicated; simulation

accuracy is limited; migration is difficult; user customization

and secondary development are difficult.

IV. PROPOSED METHODOLOGY

 In this section, we design a simulator architecture based on
ROS2, Gazebo, and PX4. Once implemented, the software
will be able to better support user-customized visual
navigation algorithm verification for UAVs and provide the
corresponding user interface to evaluate the execution results
of the corresponding algorithm, improving the efficiency and
security of the algorithm verification, lowering the cost of the
algorithm during the verification process, and shortening the
development cycle of the UAV's algorithm. As a result, this
simulation environment employs SITL first to eliminate
software flaws in the early stages, followed by HITL to better
mimic real-world execution.

Figure 1. Draft architecture for the Simulator

 As illustrated in Figure 1, we design an architecture for the
simulation environment. The end-user parts are considered to
show the interaction with the simulator in order to better
illustrate the workflow of the proposed architecture. The
simulator will support both SITL and HITL modes for smooth
transitions from simulation to real-world UAV tasks.
Depending on the algorithms used, the Gazebo provides world
and UAV models, as well as custom-define sensor models.
Users can then operate the UAVs with keyboard controllers to
perceive the environment and compare the algorithm's
estimation with the simulator's ground truth. The navigation
modules are divided into separate modules that include
localization, planning, and mapping components that the end
user can customize for specific usage. Furthermore, because

the simulator runs on ROS2, these modules communicate and
coordinate with one another via ROS2 topics[24]. The
communication between ROS2 and PX4[25] will also include
PX4-supplied methods. In the early stages of SITL, the
perception and planning modules, along with other
components, run on the host. The user can begin by using
QgroundControl to schedule flights and monitor drone status.
The simulator will then instruct the sensors plugin in Gazebo
to retrieve data from the environment and send it for
navigation tasks such as perception and mapping. The
situation in HITL would become more complicated with the
introduction of environmental factors such as drone
communications, weather, and human interruptions. In HITL
mode, the navigation modules run on the UAV's onboard
computer, and the Gazebo serves as an intermediary between
the PX4 controller and the navigational modules.

 The ability to abstract the system is required before using
detailed software design patterns. High-level abstraction
necessitates a thorough understanding of the entire system,
including component interactions and the function of each
component. As a result, the detailed architecture will be
proposed and then refined later for a more seamless
implementation.

V. DIFFICULTIES AND POSSIBLE SOLUTIONS

 This section provides an overview of the potential
problems and solutions. The first issue is that ROS and ROS2
are incompatible. To address this issue, we propose two
possible solutions for running the two environments
concurrently on a single host: 1) Use the ROS1bridge
provided by the ROS developers; and 2) Use Docker
containers to encapsulate the environments. The
sophistication of the simulation environment itself would be
the second barrier. To improve robustness and reusability, we
intend to use the Model-Driven Engineering paradigm to
decompose the workload for each module.

A. ROS and ROS2 Environment Incompatibility

 The incompatibility of ROS and ROS2 is a barrier to
implementing the simulator because the parallel nodes from
ROS and ROS2 must run concurrently within a single
simulator to make a trade-off between the abundance of ROS
packages and the benefits of ROS2 such as higher robustness
from distributed architecture. For example, the ROS package
rqt_bag does not yet have a counterpart in ROS2[26]. To
address these issues, two possible solutions are proposed: 1)
Use the ROS1brigde to bridge the gap between ROS and
ROS2; 2) Using Docker, create separate containers to hold
two middleware.

1. ROS1brigde migration

 The ROS community proposed ROS1bridge for the
migration to ROS2 in 2015. The onboard computer's
microRTPS agent acts as a bridge between PX4 and ROS2
messages and topics[27], allowing information (e.g., vehicle
odometry) to be read from and commands (e.g., waypoints) to
be written to the flight controller[28]. Supported by PX4, it
allows ROS 2 nodes to interact with the PX4[29]. Despite its
rapid iteration, the microRTPS is currently in use and could
be adopted for further integration.

2. Docker encapsulation

Shunki et al.[30] devised a container-based method for
migrating ROS-based mobile robots to ROS2 using separate
Docker containers. Docker migration is more efficient than
methods such as dual booting because it is a lightweight
framework. The computer does not directly install ROS and/or
ROS2, but rather implements the two ROS and/or ROS2
versions, as well as the corresponding Ubuntu version of the
OS, as each container within Docker. Both environments are
thus encapsulated in their respective containers, with
communication capability reserved. The Docker method can
be used further in this study to improve compatibility of
different environments.

B. The complexity of the software development process

 In large-scale software systems, the complexity of the
software development process is unavoidable. A 2020
survey[31] revealed that 92 percent of robotic software
developers were concerned about the robustness of current
robotic software systems. As a result, the extensive use of
object-oriented methods benefits software development
engineering management and optimization. This method
could aid in the development of a modular environment for
large-scale software system implementation. Model-driven
engineering is proposed as a promising solution to this
problem. Model-driven engineering can be used in robotic
software development procedures to improve robustness and
reuse[32]. Instead of being driven by code, the model-driven
process enriches the model during development until it is
finally executable in the form of deployed software
components[33]. The simulator will first be described in a
model-based representation (platform independent model or
PIM) that is independent of the underlying framework,
middleware structures, operating systems, and programming
languages in the proposed procedure [34]. Following
validation of PIM's correctness, it will be transformed into a
platform-specific model (PSM) that provides bindings for
platform-specific refinements. The PSM will then be
converted into a platform-specific implementation (PSI) [36].

VI. EVALUATION AND EXPECTED RESULT

This section focuses on the simulator's evaluation metrics
and expected test results. The test can be performed in two
steps: the first will be a unit test, and the second will include
an exhaustive test on well-known datasets. We will first define
modular test units for the unit test in order to evaluate the
functionality within each module and cover the stability of
each one in the early stages. The comprehensive test is
typically used to identify module faults.

Following the integration of each module, we will test the
simulator's accuracy on the TUM[37], KITTY[38], and
EuroC[39] datasets with SLAM-related algorithms such as
ORB-SLAM2[40][41] and VINS-fusion[42] for monocular,
stereo, and Lidar input to comprehensively compare the
simulator's performance. Visual information is typically fused
with IMU data in the UAV application using either a filter-
based framework or an optimization-based framework. As a
result, testing it with both visual and inertial data inputs would
be more reliable. To quantify the results, we will use the

trajectory comparison between our estimation and the ground
truth[43, 44].

VII. OUTLINE OF THE WORKING PLAN

This section is about the simulator's strategic planning. A
Gantt chart is used to illustrate the plan. The Gantt chart is a
diagram that shows the relationship between various
tasks[45]. We have the following tasks and subtasks for this
scheme. During the requirement procedure, we will fully
consider end-user requirements and create a prototype to
specify and precisely define the system's interaction and
expected behavior. The architecture of this simulator will then
be further designed and refined, and a primary model for it
will be presented. [46]. Figure 2 depicts the six stages of this
research's work plan: 1)Requirement gathering, which
includes a background check and competitor research. 2) The

architecture analysis, which includes module decomposition
and architecture refinement based on the specified
requirements; 3) The system design, in which the UML will
be used to build a coarse-to-fine structure of pyramidical
models based on the architecture[47]. 4) Code
implementation, which involves converting the defined
models into executable codes. 5) Testing and debugging,
when integration tests based on unit tests will be implemented
to verify the consistency of each component before the
comprehensive system test on datasets for validation; 6) The
deployment process, in which the modules will be jigsawed
and assembled into a simulator for use and further
development; 7)The documentation process, in which all
documents for requirements, design, deployment, and end-
user instruction will be archived. This stage will also compile
the previous stages into a paper and an open-source library.

Figure 2.The working plan for this research

REFERENCES

[1] Shakhatreh, Hazim, Ahmad H. Sawalmeh, Ala Al-

Fuqaha, Zuochao Dou, Eyad Almaita, Issa Khalil, Noor

Shamsiah Othman, Abdallah Khreishah, and Mohsen

Guizani. "Unmanned aerial vehicles (UAVs): A survey on

civil applications and key research challenges." Ieee Access

7 (2019): 48572-48634.

[2] Cui, Jin Qiang, Shupeng Lai, Xiangxu Dong, Peidong

Liu, Ben M. Chen, and Tong H. Lee. "Autonomous

navigation of UAV in forest." In 2014 International

Conference on Unmanned Aircraft Systems (ICUAS), pp.

726-733. IEEE, 2014.

[3] Schmidt, G. T. "GPS based navigation systems in

difficult environments." Gyroscopy and Navigation 10, no.

2 (2019): 41-53.

[4] Gyagenda, Nasser, Jasper V. Hatilima, Hubert Roth, and

Vadim Zhmud. "A review of GNSS-independent UAV

navigation techniques." Robotics and Autonomous Systems

(2022): 104069.[3] Schmidt, G. T. "GPS based navigation

systems in difficult environments." Gyroscopy and

Navigation 10, no. 2 (2019): 41-53.

[5] Vanegas, Fernando, Kevin J. Gaston, Jonathan Roberts,

and Felipe Gonzalez. "A framework for UAV navigation

and exploration in GPS-denied environments." In 2019 ieee

aerospace conference, pp. 1-6. IEEE, 2019.[3] Schmidt, G.

T. "GPS based navigation systems in difficult

environments." Gyroscopy and Navigation 10, no. 2 (2019):

41-53.

[6] Chen, Shengyang, Han Chen, Weifeng Zhou, C-Y. Wen,

and Boyang Li. "End-to-end uav simulation for visual slam

and navigation." arXiv preprint arXiv:2012.00298

(2020).[3] Schmidt, G. T. "GPS based navigation systems in

difficult environments." Gyroscopy and Navigation 10, no.

2 (2019): 41-53.

[7] Song, Yunlong, Selim Naji, Elia Kaufmann, Antonio

Loquercio, and Davide Scaramuzza. "Flightmare: A flexible

quadrotor simulator." In Conference on Robot Learning, pp.

1147-1157. PMLR, 2021.

[8] Furrer, Fadri, Michael Burri, Markus Achtelik, and

Roland Siegwart. "Rotors—a modular gazebo mav

ID Task Name Start Finish Duration Complete Priority

2022-11-09 2023-01-01 2023-04-01
2022-11-09 2022-12-01 2023-01-01 2023-02-01 2023-03-01 2023-04-01 2023-

05-01

1 Requirement Gathering 2022-11-09 2022-12-09 3 w. 2 d. 42.6% 1

2 Architecture Analysis 2022-12-09 2022-12-28 2 w. 0 d. 0.0% 2

3 Syetem Design 2022-12-30 2023-01-18 2 w. 0 d. 0.0% 2

4 Code implementation 2023-01-19 2023-03-21 5 w. 6 d. 0.0% 1

5 Testing and Debugging 2023-03-21 2023-04-07 2 w. 0 d. 0.0% 3

6 Deployment 2023-03-22 2023-04-19 3 w. 0 d. 0.0% 3

7 Documentation 2023-04-18 2023-05-05 2 w. 0 d. 0.0% 1

simulator framework." In Robot operating system (ROS),

pp. 595-625. Springer, Cham, 2016.

[9] Koenig, Nathan, and Andrew Howard. "Design and use

paradigms for gazebo, an open-source multi-robot

simulator." In 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS)(IEEE Cat. No.

04CH37566), vol. 3, pp. 2149-2154. IEEE, 2004.

[10] Quigley, Morgan, Ken Conley, Brian Gerkey, Josh

Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and

Andrew Y. Ng. "ROS: an open-source Robot Operating

System." In ICRA workshop on open source software, vol.

3, no. 3.2, p. 5. 2009.

[11] Maruyama, Yuya, Shinpei Kato, and Takuya Azumi.

"Exploring the performance of ROS2." In Proceedings of

the 13th International Conference on Embedded Software,

pp. 1-10. 2016.

[12] https://www.ros.org

[13] Macenski, Steven, Tully Foote, Brian Gerkey, Chris

Lalancette, and William Woodall. "Robot Operating System

2: Design, architecture, and uses in the wild." Science

Robotics 7, no. 66 (2022): eabm6074.

[14] Meier, Lorenz, Dominik Honegger, and Marc

Pollefeys. "PX4: A node-based multithreaded open source

robotics framework for deeply embedded platforms." In

2015 IEEE international conference on robotics and

automation (ICRA), pp. 6235-6240. IEEE, 2015.

[15] Shah, Shital, Debadeepta Dey, Chris Lovett, and

Ashish Kapoor. "Airsim: High-fidelity visual and physical

simulation for autonomous vehicles." In Field and service

robotics, pp. 621-635. Springer, Cham, 2018.

[16] https://microsoft.github.io/AirSim/

[17] Hentati, Aicha Idriss, Lobna Krichen, Mohamed

Fourati, and Lamia Chaari Fourati. "Simulation tools,

environments and frameworks for UAV systems

performance analysis." In 2018 14th International Wireless

Communications & Mobile Computing Conference

(IWCMC), pp. 1495-1500. IEEE, 2018.

[18] A. Babushkin, jMavSim, Dec. 2020, [online]

Available: https://github.com/PX4/jMAVSim.

[19] Collins, Jack, Shelvin Chand, Anthony Vanderkop, and

David Howard. "A review of physics simulators for robotic

applications." IEEE Access 9 (2021): 51416-51431.

[20] Guerra, Winter, Ezra Tal, Varun Murali, Gilhyun

Ryou, and Sertac Karaman. "Flightgoggles: Photorealistic

sensor simulation for perception-driven robotics using

photogrammetry and virtual reality." In 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), pp. 6941-6948. IEEE, 2019.

[21] C. Ma, Y. Zhou and Z. Li, "A New Simulation

Environment Based on Airsim, ROS, and PX4 for

Quadcopter Aircrafts," 2020 6th International Conference

on Control, Automation and Robotics (ICCAR), 2020, pp.

486-490, doi: 10.1109/ICCAR49639.2020.9108103.

[22] K. Xiao, S. Tan, G. Wang, X. An, X. Wang and X.

Wang, "XTDrone: A Customizable Multi-rotor UAVs

Simulation Platform," 2020 4th International Conference on

Robotics and Automation Sciences (ICRAS), 2020, pp. 55-

61, doi: 10.1109/ICRAS49812.2020.9134922.

[23] Xu, Guoliang, Zhiqun Yang, Wei Lu, and Luping

Zhang. "Decentralized Multi-UAV Cooperative Search

Based on ROS1 and ROS2." In International Conference on

Autonomous Unmanned Systems, pp. 2427-2435. Springer,

Singapore, 2021.

[24] Nyboe, Frederik Falk, Nicolaj Haarhøj Malle, and

Emad Ebeid. "MPSoC4Drones: An Open Framework for

ROS2, PX4, and FPGA Integration." In 2022 International

Conference on Unmanned Aircraft Systems (ICUAS), pp.

1246-1255. IEEE, 2022.

[25] Jiang, Zhenhua, and Tejas Patil. "A Distributed

Hardware-in-the-Loop Simulation Testbed for Swarms of

Small Autonomous Vehicles." In AIAA AVIATION 2022

Forum, p. 4057. 2022.

[26] Xu, G., Yang, Z., Lu, W., Zhang, L. (2022).

Decentralized Multi-UAV Cooperative Search Based on

ROS1 and ROS2. In: Wu, M., Niu, Y., Gu, M., Cheng, J.

(eds) Proceedings of 2021 International Conference on

Autonomous Unmanned Systems (ICAUS 2021). ICAUS

2021. Lecture Notes in Electrical Engineering, vol 861.

Springer, Singapore. https://doi.org/10.1007/978-981-16-

9492-9_239

[27] Malle, Nicolaj H., Frederik F. Nyboe, and Emad Ebeid.

"Onboard Powerline Perception System for UAVs using

mmWave Radar and FPGA-Accelerated Vision." IEEE

Access (2022).

[28] Bird, John J., Camron A. Hirst, Steven Valenzuela,

Steve Borenstein, and Eric W. Frew. "An Autopilot

Interface to Advance Fixed-Wing UAS Autonomy

Research." In AIAA SCITECH 2022 Forum, p. 1852. 2022.

[29] Jiang, Zhenhua, and Tejas Patil. "A Distributed

Hardware-in-the-Loop Simulation Testbed for Swarms of

Small Autonomous Vehicles." In AIAA AVIATION 2022

Forum, p. 4057. 2022.

[30] Shibuya et al., "Seamless Rapid Prototyping with

Docker Container for Mobile Robot Development," 2022

61st Annual Conference of the Society of Instrument and

Control Engineers (SICE), 2022, pp.1063-1068, doi:

10.23919/SICE56594.2022.9905781.

[31] Sergio García, Daniel Strüber, Davide Brugali,

Thorsten Berger, and Patrizio Pelliccione.2020. Robotics

software engineering: a perspective from the service

robotics domain.In Proceedings of the 28th ACM Joint

Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering

(ESEC/FSE 2020).Association for Computing Machinery,

New York, NY, USA, 593–604.

https://doi.org/10.1145/3368089.3409743S.

[32] de Araújo Silva, Edson, Eduardo Valentin, Jose

Reginaldo Hughes Carvalho, and Raimundo da Silva

Barreto. "A survey of Model Driven Engineering in

robotics." Journal of Computer Languages 62 (2021):

101021.

[33] Casalaro, Giuseppina Lucia, Giulio Cattivera, Federico

Ciccozzi, Ivano Malavolta, Andreas Wortmann, and Patrizio

https://www.ros.org/
https://microsoft.github.io/AirSim/
https://doi.org/10.1007/978-981-16-9492-9_239
https://doi.org/10.1007/978-981-16-9492-9_239
https://doi.org/10.1145/3368089.3409743S.

Pelliccione. "Model-driven engineering for mobile robotic

systems: a systematic mapping study." Software and

Systems Modeling 21, no. 1 (2022): 19-49.

[34] Benguria, Gorka, Xabier Larrucea, Brian Elvesæter,

Tor Neple, Anthony Beardsmore, and Michael Friess. "A

platform independent model for service oriented

architectures." In Enterprise interoperability, pp. 23-32.

Springer, London, 2007.

[35] Burt, Carol C., Barrett R. Bryant, Rajeev R. Raje,

Andrew Olson, and Mikhail Auguston. "Quality of service

issues related to transforming platform independent models

to platform specific models." In Proceedings. Sixth

International Enterprise Distributed Object Computing, pp.

212-223. IEEE, 2002.

[36] Müller, Marcus, Johannes Klöckner, Irina Gushchina,

Alexander Pacholik, Wolfgang Fengler, and Arvid Amthor.

"Performance evaluation of platform-specific

implementations of numerically complex control designs for

nano-positioning applications." International Journal of

Embedded Systems 5, no. 1-2 (2013): 95-105.

[37] Tenorth, Moritz, Jan Bandouch, and Michael Beetz.

"The TUM kitchen data set of everyday manipulation

activities for motion tracking and action recognition." In

2009 IEEE 12th International Conference on Computer

Vision Workshops, ICCV Workshops, pp. 1089-1096.

IEEE, 2009.

[38] Geiger, Andreas, Philip Lenz, and Raquel Urtasun.

"Are we ready for autonomous driving? the kitti vision

benchmark suite." In 2012 IEEE conference on computer

vision and pattern recognition, pp. 3354-3361. IEEE, 2012.

[39] Burri, Michael, Janosch Nikolic, Pascal Gohl, Thomas

Schneider, Joern Rehder, Sammy Omari, Markus W.

Achtelik, and Roland Siegwart. "The EuRoC micro aerial

vehicle datasets." The International Journal of Robotics

Research 35, no. 10 (2016): 1157-1163.

[40] Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós.

ORB-SLAM: A Versatile and Accurate Monocular SLAM

System. IEEE Transactions on Robotics, vol. 31, no. 5, pp.

1147-1163, 2015.

[41] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an

Open-Source SLAM System for Monocular, Stereo and

RGB-D Cameras. IEEE Transactions on Robotics, vol. 33,

no. 5, pp. 1255-1262, 2017.

[42] Qin, Tong, and Shaojie Shen. "Online temporal

calibration for monocular visual-inertial systems." In 2018

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 3662-3669. IEEE, 2018.

[43] Kraft, Marek, Michał Nowicki, Adam Schmidt, Michał
Fularz, and Piotr Skrzypczyński. "Toward evaluation of

visual navigation algorithms on RGB-D data from the first-

and second-generation Kinect." Machine Vision and

Applications 28, no. 1 (2017): 61-74.

[44] Megalingam, R. Kannan, C. Ravi Teja, Sarath

Sreekanth, and Akhil Raj. "ROS based autonomous indoor

navigation simulation using SLAM algorithm." International

Journal of Pure and Applied Mathematics 118, no. 7 (2018):

199-205.

[45] Tereso, Anabela, Pedro Ribeiro, Gabriela Fernandes,

Isabel Loureiro, and Mafalda Ferreira. "Project management

practices in private organizations." Project Management

Journal 50, no. 1 (2019): 6-22.

[46] Lee, Sangkon, and Olga A. Shvetsova. "Optimization

of the technology transfer process using Gantt charts and

critical path analysis flow diagrams: Case study of the

korean automobile industry." Processes 7, no. 12 (2019):

917.

[47] Ahmad, Tanwir, Junaid Iqbal, Adnan Ashraf, Dragos

Truscan, and Ivan Porres. "Model-based testing using UML

activity diagrams: A systematic mapping study." Computer

Science Review 33 (2019): 98-112.

	I. Introduction
	II. Research Aim
	The purpose of this research is to, first, identify the simulation requirements for navigation solutions and specify the boundary as well as the scope of this system, second, propose an architecture for the simulation environment, and finally tes...
	III. Literature Review
	IV. Proposed methodology
	As illustrated in Figure 1, we design an architecture for the simulation environment. The end-user parts are considered to show the interaction with the simulator in order to better illustrate the workflow of the proposed architecture. The simulator ...

	V. Difficulties and possible solutions
	A. ROS and ROS2 Environment Incompatibility
	B. The complexity of the software development process

	VI. Evaluation and expected result
	VII. Outline of the working plan
	References

